Lecture 26

Hardness of
Approximation

Foundations of Probabilistic Proofs
Alessan dro Chiesa



Applications of PCPs
Two wain directions:
Seen BerFore ToODAY

Computational Tntegrity Hardness ot Approximation

How to vetify computations Which problams remain hard
Lastar Hhan they cam be run even it we only Seek

an approximote Solvkion ¢




Coping with NP-Hardness

Numerovs {:uv\damzn’ral optizimation problems are NP- hard.

Eq. 35AT, Graet Coloring, Traveling SaLesHAN , Kapsack , CLiaug, VemexCover, ...
=P T[ PZNF then none of Hhese problems  con be Solved in Pol)momia) time.
Q: How %o Cope With NP - hardness ?

(D correct but slow aljor\'H\w\s
Solve Hhe problem exacHy vio on odsoriHl\w\ whose (Sul)(t'—laolyv\omfal> r\mniy\a time

(1™

is not bod on small instances. Ex: t(n) = 11" < 200 million << 22*°)

® foct bub incorrect algorithms = (oKo  APPROXIMATION ALGogiTHMS)
Solve the problum approximately via o polynomial-time  algorithm.

The quality of the approximation must ke quarantzed for every input.

Another ditection to cope With NP- hardness s to foreso worst-case. input  guarantees:
() efficient algorithms Hhat selve “natoral” inputs (o major d\od\e,nsz is to model “natural’ )

() efSicient algorithms that work well in practice (aka hevtristics)



Approximation Algorithms

A maximization problem is o pair J=(sol,val) where:

*
+ ol (x) is the (possibly empty) set of valid solvtions for the instance xefon?
- vallx,w) is the volve of Hhe solution we sollx) or x

We defing val(x):= max § vallx,w): we sol(x}.

¢ val(x)
An olgerithm A has approximation ratio a1 for &= (sol,val) if — val (x,Ab)
1 L. .wallx)
¥x  val (x,A)) = &~va|(x) . *
The minimizotion case is similar except that:
+ «-val(x)

o VQ\ \x):: V)')\V\ { VO\ \X/W ): W€ SD‘(X)}' val(x,Ax)
«— ,AlX

+ %1 musk satisfy Vx val (x,Alx)) < - val (x) L val

Exomple : Mox3SAT { Instonces x are 3CNF formulag.
IE x hos n voriables Hen sol(x)=§0,11"

Vol (x,w) = Fraction of clovses in x Satiskied by we {0,3"

Bosic GoaL: design approximation algorithms for NP-hard problems with small




Approximation Landscape

Researchers have dex\jmd approximation a\goriH\ms Sinte the 1920s.

Examples:

+ Knapsack K= 1+€ in time poly(n,g)  (FPTAS bosed on dynamic programming)

» VerTex(over K=2 (vertices in o maximal Mo\’rd\ing,)

- SeT(ovER ’}"“\"S'- K= 0(logn) (pick. se¥ Covering most peints R repeat)

+ TnpepenventdET X = MoxDegreet1 = Olh) ( remove m(n-dqsm Vertex and its neighbers & mrm’r)

« TraveungSalesHan  none

Results S\mq&i' Hhak ProHtm\S be have very di@?eruﬁ-\y rt appm)\'\mah'on factors.

(Even i€ the problems are reducible to one anokher via polynomial-time reductions.)
Q: \/\/hy diﬁ:z\—qvﬁ' O\Fprox\mo\\’iov\ factors ?

NP reductions preserve safistiability but not necessarily &Pproximmbi\i+y,
T hey independently  +ransform Sub%&daﬁfs with diﬂ’erinca b\owui:s in Size.



Hardness of Approximation
Q: Why these specific approximation factors?
We con aim to explain thum by showing that we cannot do better:
GoAL: prove hardness of approximation resvlts

We wish to prove stafemeats of the Form
,/IF problem O is o(-o\ﬂ:r-«oximab\& in polynomia] +ime +hen I’=NF\:
T his generalizes He cdassical “Tf problem & is solvable in polynomial time then P<NT .
—
|- OrFrox{w\qu
Cho\\enﬂq . NP reductions don't have “gops"

Computation of a0 __ Cook-Levin 3ISAT — . Foblem of
non-daterministic TM Theorem hecuetion — Fin’rercs-k

AN
4 local teductiont
sensitive. o Small ckomﬁzs

—p S’rrov\a hordness of Gpproximation tequires rejec+in3 CDMfU\'a\'iMS to be far ?\'om Mce_rﬁna Onee.

~» PCPs play & role in hardness of approximation



Constraint Satisfaction Problems

A constraint satisfoction Problelm (CSPs) gemm\i%ec +he. notion oQ 3SAT.

deb: A (Z0,4)-constraint s o poir c-(ss:) where Se(®) and §: {01,
An. ossignment g e ZZ atishes C=(S4) ¢ §(al9)=).

dd: A (Z,l,q,m)—CSP is o list $=(G,., Q) where eoch (G=(S;,5) is o (T,4,9)- constraint-
The volue of @ on assignment ae s val (g, a) = LM.Z'Z. f-(al(sy),
The valve o ¢ is val(p):= maXe Va|(¢,&)/ and @ is safisfioble it val(@)=1.

We associa¥e  two problems tv CSPs:
‘ meCSP[Z,Q,q,M] is +he search problem that asks 1o find aeZt that maximizes val (¢ a)
+ Gop CSPL€.8,Z,8,q,m) is He decision problem thot asks to distinguish it val®21-5. or vallp)<e

claim: CopCSPLe, &2 ,9,9.m) is NP-hard — approximating MaxCSP [, £,q,m] with o(<'—"g§f is NP-hard
proof: If val($) 21-€. then the approximation is at least L vc\l(¢)> -.(I-E<)> £s (\ €)= &.
TL val(B) < & then the opproximation is ak most vql(¢)< Es. |

To show hardness of approximation it stfices to show hordness ot gap problems.



CSP vs PCP

hete is an equivalence between CSPs and  (non-odaptive) PCHs.

daiwm: | reduces fo GQFCSP[&Q,Gg,Z/Q/q/M] — | e PCP[Ec,fs,Z,Q,q,\%Iogm]

ptoot R

ok \/,,::ez (X): I. Redvce x +o the CSP #=(G,..,Cn).
2. Sample jelml.
3. Cheek that [;la(s;))-1.

The PCP verifier makes q gueries and vSes rzlgm rondom bits.
Completenss and soundness follow from the fact that YaeZX P [ Veep (%)=11= val (8,0). N

claim: L ePCP[ec & T, ¢,q,r] — L redvces to GapCSPLEEs,3 £,q, me2'] in time poly (2,n)

proof: Let V=(@D) be the PCP verifier for L.
Map Hhe instance x To the CSP instance @= (Coloegyyr where

Co= (Spfy) with  S=Qlg) and §(alS)<Dlx,¢,a(%)). a
DIQ*'IOI\G\'yt pcy \IQ\'\QiQ\' < (CSP intrance proo{ lo.r\gi'ln < number ¢f variables
PCP  stri ng < assisnme.n’r query comPlcx'\%y < oanty of constraints

completeness [soundness <> yes/vo Hhresholds  Fandomness Complexity <> log of number of constrains ¢



Inapproximability of Max3SAT [1/3]

We  Jearned that NP ¢ PCPIEE, T, 0 r=O0eqn)] — (opCSP [€<,€:, ¢,q,m=poly(n)] is NP-hard.
So the PCP Theorem tells vs that 3 £, st. GQPCST[&m, €, 2={0,1], 0= poly (), 9,m= Poly(n)] IS NP-hard .

What can we say oboot the ir\aﬂarox{malsiliv o} Max3SAT (cizs and constrainks are NF clavses) !

+heotrem: J&se (o) st d(dd\'v\ca i{ o T™AT § has val(#)=1 or val(B)s& is NP- hard

Follows from the above resvit and +he next lemma (yy,aP each copstraiat fo o 3CNVE):
|emwma- GQPCSP [_&/ 5;/240,!},[,?, m] Feduces to QAFBSAT[&'&‘:|—%,Z=€o/|}/ Je':ﬁi-mf?,?‘:g/ m'=m2¢’q)
proof: Let §=(C,,. Cw) be o {1} A, q,m)-ccr.

Express each Cj as /\i‘:, @i . (vse the evaluation table)

where each @ is the OR el < q literals over the ossignment’s variables Xi,..,xp.

Then express eoch @i as o 3CNF usina <q clavses and <9 aux(\iqr/ variables.
Oero\lI we hewve Z's {+ W\-f-q vatiobles avxd M'smlq'? Constraunks .
|

I{: vol(@,0) 2 I-6c  then can extend o\e{o,l}z Yo ole{o,\‘ke s+ val (¢',0\')>/|-£c.

(I{ ¢3 is SAT then {¢5,\<,g}g,k are ol sav. T i & not SAT then |, in “‘f Worst case, Wifk#}k,k are all ot SEAT‘)
TE, ¥FaeSosl val(d,al< € +hen any extension o'e{o|* sakisfies val(p'a)< |- ‘?_Tq;
(I & is nob SAT than, in the worsk case, only “one of U;,,\t,»)sk,b 1§ not” SAT:) N



Inapproximability of Max3SAT [2/3]

lemmo: There i an expected polynomial-time olgorithm with ~ appraximation ratio o= & Lfor MaxE3SAT

B‘—oot: or”\\)\(x 1S an E;CNF
A(g): I SamPlz o random o€ 40,1}" (each clavse has exacHy 3 literals)

2. If val (a) <% goto 1. Else ovtpot a.-

The o\gorithm A ootpsts a sk val (¢,a)2%=?'/;°138‘7}~val(¢)‘

We are left to analyze it expected tynning time.

for jelml, Z;:- “indicator that & random aefo)} satisfies J-Th dauvse of ¢,

Note that E[Z;1=Pr[2i=1]= I-Br[Zj=0])= |- 3123 (Fach classe has exactly 3 liferals.)
Hence E[Z 2y]=2Zg E[2]= % m

We deduce that 3 oe §o,1)" Hhat satisfies T%-m clawes.

In foct, p:= Pr[Z‘;\. Zi2Tpm)2 8—',;\ becoavse | |2H‘in3 Pi= B[ Z‘,ZJ K]

;;..M=E[ ] KFK"'Z K[’K\(zm-"g)z P +MZ Pe <(§m--‘~) |+h\‘> — P>—

Oske[im-|  Fmekem oK< Emekem

S0 the expected number ot samples is &m , and thes A tuns in expected time O(mt). M

10



Inapproximability of Max3SAT [3/3]
We showed +Hhat IEse (o)) s+ distingvishing if a E3IVF ¢ has vall(g)<1 or vallgls & is NP-bard.

(X: How small can & be?

We expect that & 27 because of tHhe (expecred-time) § - approximation olgorithm for MaxE3SAT
( That algorithm Can be made determinishic. via the metrhod ot Conditional ExFec’rah'onc.)

The o\pproximahbn mtio Cannot be improved .

+heorem”. ¥¥>0 it is NP-hard to dis’rinﬂvisb it a E3NF ¢ has val(p)=1 or vol (¢)s%+x

We do not ptove Hi< Hheorem.
The proof shows that NP SPCP [Eco, 8s<§‘+K,Z=§o,I1,LPolyln)/ c{=3/f=0(|OgV\)] where
the (non»o\dar{'ive) PCP  verifier decides via an E3NF clavse.

Tools include : PCP Theorem, paralle| repetition long code,, boolean Fourier analysi.

The soundness error  con be improved it the (non-adqphvt) PCP verifier can be arbii'rary:
¥¥>0, NPCPCP[ &0 €55+, T=forY, Lo poly(n), g=3, = 0(logn) ]
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